Part Number Hot Search : 
A8586 MB91F46 T520AE 00020 NTE749 Q67006 25ZNIL 83C51
Product Description
Full Text Search
 

To Download GA250TD120U Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 50054A
GA250TD120U
"HALF-BRIDGE" IGBT DOUBLE INT-A-PAK
Features
* Generation 4 IGBT technology * Standard: Optimized for minimum saturation voltage and operating frequencies up to 10kHz * Very low conduction and switching losses * HEXFREDTM antiparallel diodes with ultra- soft recovery * Industry standard package * UL approved
Ultra-FastTM Speed IGBT
VCES = 1200V VCE(on) typ. = 2.4V
@VGE = 15V, IC = 250A
Benefits
* Increased operating efficiency * Direct mounting to heatsink * Performance optimized for power conversion: UPS, SMPS, Welding * Lower EMI, requires less snubbing
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25C ICM ILM IFM VGE VISOL PD @ TC = 25C PD @ TC = 85C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Pulsed Collector CurrentQ Peak Switching CurrentR Peak Diode Forward Current Gate-to-Emitter Voltage RMS Isolation Voltage, Any Terminal To Case, t = 1 min Maximum Power Dissipation Maximum Power Dissipation Operating Junction Temperature Range Storage Temperature Range
Max.
1200 250 500 500 500 20 2500 1250 650 -40 to +150 -40 to +125
Units
V A
V W C
Thermal / Mechanical Characteristics
Parameter
RJC RJC RCS Thermal Resistance, Junction-to-Case - IGBT Thermal Resistance, Junction-to-Case - Diode Thermal Resistance, Case-to-Sink - Module Mounting Torque, Case-to-Heatsink Mounting Torque, Case-to-Terminal 1, 2 & 3S Weight of Module
Typ.
-- -- 0.1 -- -- 400
Max.
0.10 0.20 -- 4.0 3.0 --
Units
C/W N. m g
www.irf.com
1
4/24/2000
GA250TD120U
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
V(BR)CES VCE(on) Parameter Min. Collector-to-Emitter Breakdown Voltage 1200 Collector-to-Emitter Voltage -- -- Gate Threshold Voltage 3.0 VGE(th) VGE(th)/T J Temperature Coeff. of Threshold Voltage -- gfe Forward Transconductance T -- ICES Collector-to-Emitter Leaking Current -- -- VFM Diode Forward Voltage - Maximum -- -- IGES Gate-to-Emitter Leakage Current -- Typ. Max. Units Conditions -- -- VGE = 0V, IC = 1mA 2.4 2.9 VGE = 15V, IC = 250A 2.1 -- V VGE = 15V, IC = 250A, TJ = 125C -- 6.0 VCE = 6V, IC = 3 mA -11 -- mV/C VCE = 6V, IC = 3mA 323 -- S VCE = 25V, IC = 250A -- 2.0 mA VGE = 0V, VCE = 1200V -- 20 VGE = 0V, VCE = 1200V, TJ = 125C 3.0 4.0 V IF = 250A, V GE = 0V 2.9 -- IF = 250A, VGE = 0V, TJ = 125C -- 500 nA VGE = 20V
Dynamic Characteristics - TJ = 125C (unless otherwise specified)
Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets Cies Coes Cres trr Irr Q rr di(rec)M/dt Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Energy Turn-Off Switching Energy Total Switching Energy Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Diode Peak ReverseCurrent Diode Recovery Charge Diode Peak Rate of Fall of Recovery During tb Min. -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- Typ. Max. Units Conditions 1979 2968 VCC = 400V, VGE = 15V 334 501 nC IC = 297A 655 983 TJ = 25C 731 -- RG1 = 15, RG2 = 0 227 -- ns IC = 250A 653 -- VCC = 720V 343 -- VGE = 15V 54 -- mJ See Fig.17 through Fig.21 54 -- 108 162 44517 -- VGE = 0V 1979 -- pF VCC = 30V 383 -- = 1 MHz 214 -- ns IC = 250A 155 -- A RG1= 15 16540 -- nC RG2 = 0 1970 -- A/s VCC = 720V di/dt=1368A/s
Details of note Q through T are on the last page
2
www.irf.com
GA250TD120U
140
F o r b o th :
120
LOAD CURRENT (A)
100
D u ty c y c le : 5 0 % TJ = 1 2 5 C T sink = 9 0 C G a te d riv e a s s p e c ifie d
P o w e r D is s ip a tio n = 175 W S q u a re w a v e : 60 % of ra ted vo ltag e
80
60
I
40 Id e a l d io d e s
20
0 0.1 1 10 100
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
1000
1000
I C , Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
TJ = 125 C
100 TJ = 125 C
100
10
TJ = 25 C
TJ = 25 C V = 15V 80s PULSE WIDTH
GE 1.5 2.0 2.5 3.0
10 1.0
1 5.0
V = 25V 80s PULSE WIDTH
CE 6.0 7.0 8.0
VCE , Collector-to-Emitter Voltage (V)
VGE , Gate-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
www.irf.com
3
GA250TD120U
300 4.0 250
200
VCE , Collector-to-Emitter Voltage(V)
V = 15V 80 us PULSE WIDTH
GE
Maximum DC Collector Current(A)
3.0
I C = 500 A I C = 250 A
150
100
2.0
I C = 125 A
50
0 25 50 75 100 125 150
1.0 -60 -40 -20
0
20
40
60
80 100 120 140 160
TC , Case Temperature ( C)
TJ , Junction Temperature ( C)
Fig. 4 - Maximum Collector Current vs. Case Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature
1
Th erm al R e spo nse (ZthJC )
0.1
D = 0.5 0
P DM
0.2 0 0.10 0 .05 0.0 2 0.0 1
0.01 0.0001
Notes: 1. Duty factor D = t
t 1 t2
1 /t 2
SING L E PU LS E (TH ER M A L RE SP O N SE )
0.001 0.01 0.1
2. Peak TJ = PDM x Z thJC + TC
A
10
1
t 1 , R ectangu la r Pulse Du ra tion (se c)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
GA250TD120U
80000
60000
C, Capacitance (pF)
Cies
VGE, Gate-to-Emitter Voltage (V)
VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc
20
VCC = 400V I C = 297A
15
40000
10
C oes
20000
C res
5
0 1 10 100
0 0 500 1000 1500 2000 2500
VCE , Collector-to-Emitter Voltage (V)
QG , Total Gate Charge (nC)
( C)
Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage
200
Total Switching Losses (mJ)
Total Switching Losses (mJ)
V CC = 720V V GE = 15V TJ = 125 C 25 180 I C = 250A
160
1000
15 RG1=15;RG2 = 0 G = 15Ohm VGE = 15V VCC = 720V
IC = 500 A IC = 250 A
100
140
IC = 125 A
120
100
80 0 10 20 30 40 50
RG , Gate Resistance (Ohm) () RG , Gate Resistance ( )
10 -60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( C )
Fig. 9 - Typical Switching Losses vs. Gate Resistance
Fig. 10 - Typical Switching Losses vs. Junction Temperature
www.irf.com
5
GA250TD120U
250
Total Switching Losses (mJ)
IC , Collector Current ( A )
150
100
50
0 0 100 200 300 400
SAFE OPERATING AREA
0 500 0 200 400 600 800 1000 1200 1400
I C , Collector Current (A)
I C , Collector Current (A)
RG TJ VCC 200 VGE
=RG1 =15;RG2 = 0 15Ohm =125 C 150 = 720V = 15V
700
VGE = 20V T J = 125 oC 600 VCE measured at terminal(Peak Voltage)
500 400 300 200 100
VCE , Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current
25000
Fig. 12 - Reverse Bias SOA
1000
I F = 50 0A
20000
In sta n ta n e ou s F o rw a rd C u rre n t - I F (A )
I F = 2 50 A I F = 12 5A
T = 1 2 5 C
J
TJ = 2 5C
100
QRR - ( nC) Q R R - (n C )
15000
10000
5000
VR = 7 2 0V T J = 12 5 C T J = 25 C
10 1.0 2.0 3.0 4.0
0 500
800
F o rw a rd V o lta ge D ro p - V FM (V )
d i f /dt - (A /s)
1100
1400
1700
2000
Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current
Fig. 14 - Typical Stored Charge vs. dif/dt
6
www.irf.com
GA250TD120U
400 250
I F = 500A I F = 250A I F = 125A
300 200
IF = 500A I = 250 A
F
IF = 125A
I IR R M - ( A )
trr - ( ns ) t rr - (n s )
200
IRRM - ( A )
150
100
100 50
VR = 7 2 0 V T J = 1 2 5 C TJ = 2 5 C
0 500 800
VR = 7 2 0 V T J = 1 2 5 C T J = 2 5 C
d i f /dt - (A /s)
1100
1400
1700
2000
0 500
800
1100
1400
1700
2000
d i f /d t - (A /s)
Fig. 15 - Typical Reverse Recovery vs. dif/dt
Fig. 16 - Typical Recovery Current vs. dif/dt
www.irf.com
7
GA250TD120U
90% Vge +Vge
Vce
Ic
10% Vce Ic
9 0 % Ic 5 % Ic
td (o ff)
tf
Eoff =
Vce Ic dt
t1 + 5 S V c e ic d t t1
Fig. 17 - Test Circuit for Measurement of ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1 t2
Fig. 18 - Test Waveforms for Circuit of Fig. 17, Defining Eoff,
td(off), tf
G A T E V O L T A G E D .U .T . 1 0 % +V g +Vg
trr Ic
Q rr =
trr id ddt Ic t tx
tx 10% Vcc Vce Vcc 1 0 % Ic 9 0 % Ic D UT VO LTAG E AN D CU RRE NT Ip k Ic
1 0 % Irr V cc
V pk Irr
D IO D E R E C O V E R Y W A V E FO R M S td (o n ) tr 5% Vce t2 Vce d E o n = V ce ieIc t dt t1 t2 D IO D E R E V E R S E REC OVERY ENER GY t3 t4
E re c =
t4 V d idIc t dt Vd d t3
t1
Fig. 19 - Test Waveforms for Circuit of Fig. 17,
Defining Eon, td(on), tr
Fig. 20 - Test Waveforms for Circuit of Fig. 17,
Defining Erec, trr, Qrr, Irr
8
www.irf.com
GA250TD120U
V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T .
V O L T A G E IN D .U .T .
C U R R E N T IN D 1
t0
t1
t2
Figure 21. Macro Waveforms for Figure 17's Test Circuit
L 1000V 50V 6000 F 100 V Vc*
D.U.T.
RL= 0 - 600V
600V 4 X IC @25C
Figure 22. Clamped Inductive Load Test Circuit
Figure 23. Pulsed Collector Current Test Circuit
www.irf.com
9
GA250TD120U
Notes:
Q Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature.
R See fig. 17 S For screws M5x0.8 T Pulse width 80s; single shot.
Case Outline -- DOUBLE INT-A-PAK
Dimensions are shown in millimeters (inches)
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 IR EUROPEAN REGIONAL CENTRE: 439/445 Godstone Rd, Whyteleafe, Surrey CR3 OBL, UK Tel: ++ 44 (0)20 8645 8000 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 (0) 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 011 451 0111 IR JAPAN: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo 171 Tel: 81 (0)3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 (0)838 4630 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673 Tel: 886-(0)2 2377 9936 Data and specifications subject to change without notice. 4/00
10
www.irf.com


▲Up To Search▲   

 
Price & Availability of GA250TD120U

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X